

Poincare Journal of Analysis & Applications Vol. 2019 (2), 97-104 ©Poincare Publishers

ON $|K^{\lambda}|$ SUMMABILITY OF ORTHOGONAL SERIES

XHEVAT Z. KRASNIQI

Date of Receiving	:	07.05.2019
Date of Revision	:	25.08.2019
Date of Acceptance	:	09.12.2019

Abstract. In this paper we have proved two theorems pertaining to $|K^{\lambda}|$ summability of orthogonal series.

1. Introduction

Let $\{\psi_n(x)\}$ be an orthonormal system defined in the interval (a, b). We assume that f(x) belongs to $L^2(a, b)$ and

$$f(x) \sim \sum_{n=0}^{\infty} c_n \psi_n(x), \tag{1.1}$$

where $c_n = \int_a^b f(x)\psi_n(x)dx$, (n = 0, 1, 2, ...). By The Riesz-Fischer theorem, for the existence of the function f such that $c_n = \int_a^b f(x)\psi_n(x)dx$ for every n, a necessary and sufficient condition is the convergence of the series $\sum a_n^2$.

Let $\sum_{n=0}^{\infty} a_n$ be a given infinite series with its partial sums s_n and let σ_n^{α} denotes the *n*th Cesàro mean of order α (see [4]) such that

$$\sum_{n=1}^{\infty} n^{k-1} |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}|^k < \infty.$$

$$\tag{1.2}$$

A series $\sum_{n=0}^{\infty} a_n$ is said to be absolutely summable by Cesàro method of $\alpha > -1$ and index $k \ge 1$, symbolically

$$\sum_{n=0}^{\infty} a_n \in |C, \alpha|, \quad (\alpha > -1, k \ge 1),$$

if (1.2) holds.

Let p_n be a sequence of positive numbers such that

2010 Mathematics Subject Classification. 40B05, 40C05, 40G05, 42A10, 42A24.

Key words and phrases. Orthogonal series, absolute summability, non-increasing sequence. The author would like to express his gratitude to the anonymous referee for her/his suggestions which definitely improved the first version of this research paper. Communicated by: Prem Chandra