

Poincare Journal of Analysis & Applications Vol. 2019 (2), 123-136 ©Poincare Publishers

CONVERGENCE ANALYSIS OF ALGORITHMS FOR VARIATIONAL INEQUALITIES INVOLVING STRICTLY PSEUDO-CONTRACTIVE OPERATORS

ASHISH NANDAL^{\dagger}, RENU CHUGH, AND SUDESH KUMARI

:	15.10.2019
:	19.12.2019
:	23.12.2019
	: : :

Abstract. The purpose of the present work is to analyze the convergence of two new viscosity iterative algorithms for finding common solutions to variational inequality problem and fixed point problem of a finite system of strictly pseudo-contractive operators in a q-uniformly smooth Banach space. Under suitable conditions, some strong convergence theorems are obtained. Using Matlab software, we numerically solve a convex feasibility problem. Our results improve some existing known results.

1. Introduction

Consider the well known convex feasibility problem (CFP):

finding an
$$x \in \bigcap_{i=1}^{k} C_i$$
 (1.1)

where C_1, C_2, \ldots, C_k are intersecting closed convex subsets of a Banach space X. The CFP lies in center of many problems of mathematics and the physical sciences such as computerized tomography [14], radiation therapy treatment planning [7, 11, 15], sensor networking [3], image restoration [13]. A comprehensive study on algorithms for solving the CFP can be found in [2, 13].

Let X^* be dual of a real Banach space X. For q > 1, the generalized duality mapping $J_q: X \to 2^{X^*}$ is defined by

$$J_q(u) = \left\{ u^* \in X^* : \langle u, u^* \rangle = \|u\|^q, \|u^*\| = \|u\|^{q-1} \right\}, \quad \forall \ u \in X,$$

²⁰¹⁰ Mathematics Subject Classification. 47H05, 47H10, 47J20, 47J25.

Key words and phrases. Iterative algorithm; convex feasibility problem; variational inequality; common fixed point; *q*-uniformly smooth Banach space.

Communicated by: Ramesh K. Vats

[†]Corresponding author.