Poincare Journal of Analysis & Applications Vol. 2, No. 2 (2015), Special Issue (IWWFA-II, Delhi), 13-36 ©Poincare Publishers DOI: 10.46753/pjaa.2015.v02i02.002

CONSTRUCTIONS OF MRA-BASED WAVELETS AND FRAMES IN WALSH ANALYSIS

Yu. A. Farkov

Date of Receiving	:	03.	03.	2015
Date of Revision	:	14.	05.	2015
Date of Acceptance	:	18.	05.	2015

Abstract. In this paper, we review the basic constructions of MRA-based orthogonal wavelets and tight frames related to the generalized Walsh functions. Several differences between the constructed wavelets and the classical wavelets are indicated. Further, for any integer $p \geq 2$, all compactly supported step refinable functions on the Vilenkin group G_p are characterized. In addition, we include references to the following topics: biorthogonal wavelets and frames on the Vilenkin/Cantor groups, unconditional convergence of wavelet expansions, nonstationary, periodic, and discrete wavelets in Walsh analysis, *p*-multiresolution analysis on the positive half-line, and related subjects.

1. Introduction

Given an integer $p \ge 2$, the Vilenkin group G_p consists of sequences $x = (x_j)$, where $x_j \in \{0, 1, \ldots, p-1\}$ for $j \in \mathbb{Z}$ and with at most finite number of negative j such that $x_j \ne 0$. The zero sequence is denoted by θ . If $x \ne \theta$, then there exists a unique k = k(x) such that $x_k \ne 0$ and $x_j = 0$ for all j < k. The group operation \oplus on G is defined as the coordinatewise addition modulo p,

 $(z_j) = (x_j) \oplus (y_j) \iff z_j = x_j + y_j \pmod{p}$ for all $j \in \mathbb{Z}$;

the topology on G_p is introduced via the complete system of neighbourhoods of zero

$$U_l = \{ (x_j) \in G_p : x_j = 0 \text{ for all } j \le l \}, \quad l \in \mathbb{Z}.$$

The equality $z = x \ominus y$ means that $z \oplus y = x$. For p = 2 we have $x \oplus y = x \ominus y$ and the group G_2 coincides with the locally compact Cantor group C.

Notice that for p = 2 the subgroup U_0 is isomorphic to the compact Cantor group C_0 ; i.e., the topological Cartesian product of a countable set of cyclic groups with discrete

The author thanks E. A. Rodionov for writing computer programs to draw graphs of wavelets and frames.

Communicated by. V. Yu. Protasov

²⁰¹⁰ Mathematics Subject Classification. 42C40, 42C10, 42C15, 43A15, 65T60.

Key words and phrases. wavelets, frames, Walsh functions, Cantor group, Vilenkin groups, local fields.