

Poincare Journal of Analysis & Applications Vol. 8, No. 1(II) (2021), 25-38 ©Poincare Publishers

MEROMORPHIC FUNCTIONS AND THEIR DERIVATIVES CONDITIONALLY SHARE TWO SETS

ABHIJIT BANERJEE[†] AND SANTANU DHAR

Date of Receiving	:	15.07.2020)
Date of Revision	:	10. 02. 2021	L
Date of Acceptance	:	03. 05. 2021	L

Abstract. In the paper, with the aid of relaxed sharing hypothesis, we study the uniqueness of meromorphic (entire) functions whose derivatives share a finite set. The results in this paper will improve a number of theorems earlier obtained by Meng-Hu [11] and Meng [10]. Two examples have been exhibited by us to show that the conclusions in our results actually occur.

1. Introduction and Definitions

Let us denote by $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Throughout the paper by a meromorphic function we shall always mean a meromorphic function in the complex plane \mathbb{C} . We adopt the usual notations of Nevanlinna theory as explained in [8]. By E and I we denote any set of finite and infinite linear measure respectively of $0 < r < \infty$. For any non-constant meromorphic function h(z) we define S(r,h) by S(r,h) = o(T(r,h)) where $r \longrightarrow \infty, r \notin E$.

Let f be a non-constant meromorphic function, $a \in \overline{\mathbb{C}}$ and p be a positive integer. We denote by E(a, f) the set of zeros of f(z) - a (counting multiplicity) and by $E_{p}(a, f)$ the set of zeros of f(z) - a with multiplicity $\leq p$ (counting multiplicity).

Let $S \subset \mathbb{C}$. Set

$$E_{p}(S,f) = \bigcup_{a \in S} E_{p}(a,f).$$

Then for two non-constant meromorphic functions f and g we say that f, g share the set S truncated p if $E_{p}(S, f) = E_{p}(S, g)$. If $p = \infty$, we define $E_{p}(S, f) = E(S, f) = E_{f}(S)$.

The inception of set sharing problem in the realm of the theory of meromorphic function was due to the following famous "Gross Question" {see [7]}.

[†]Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. 30D35.

 $Key\ words\ and\ phrases.$ Meromorphic function, weighted sharing, shared set, truncated multiplicity.

Communicated by. Subhash S. Bhoosnurmath