

Poincare Journal of Analysis & Applications Vol. 8, No. 1(II) (2021), 39-52 ©Poincare Publishers

ON THE SPECTRAL PROPERTIES OF NON- SELF-ADJOINT ELLIPTIC SYSTEMS OF PARTIAL DIFFERENTIAL OPERATORS

REZA ALIZADEH[†] AND ALI SAMERIPOUR

Date of Receiving	:	22.	11.	2020
Date of Revision	:	20.	05.	2021
Date of Acceptance	:	30.	08.	2021

Abstract. Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial\Omega$. In this paper, we will study the spectral properties of degenerate non-selfadjoint elliptic systems of differential operator P acting in Hilbert space $H_{\ell} = L^2(\Omega)^{\ell}$ and defined by $(Pu)(x) = -\sum_{i,j=1}^n \left(\rho^{2\alpha}(x)a_{ij}(x)Q(x)u'_{x_i}(x)\right)'_{x_j}$, with Dirichlet-type boundary conditions, indeed this paper was written in continuing on earlier our papers [10], [14], the paper is sufficiently more general than the paper [10]. Here $c|s|^2 \leq \sum_{i,j=1}^n a_{ij}(x)s_i\overline{s_j}$ ($s = (s_1, \ldots, s_n) \in \mathbb{C}^n$, $x \in \Omega$), $\rho(x) = \text{dist}\{x, \partial\Omega\}$, $a_{ij}(x) = \overline{a_{ji}(x)} \in C^2(\overline{\Omega})$, $0 \leq \alpha < 1$. Suppose that $Q(x) \in C^2(\overline{\Omega}, \text{ End } \mathbb{C}^\ell)$ such that for each $x \in \overline{\Omega}$ the matrix function Q(x) has non-zero simple eigenvalues $\mu_j(x) \in C^2(\overline{\Omega})$ ($1 \leq j \leq \ell$) arranged in the complex plane such that: $\mu_1(x), \ldots, \mu_\ell(x) \in \mathbb{C} \setminus \Phi$, where $\Phi = \{z \in \mathbb{C} : |arg z| \leq \varphi\}, \varphi \in (0, \pi)$.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $\partial \Omega$ (i.e., $\partial \Omega \in \mathbb{C}^\infty$). We introduce the weighted Sobolev space $\mathcal{H} = W^2_{2,\alpha}(\Omega)$ as the space of complex value functions u(x) defined on Ω with the finite norm:

$$|u|_{+} = \left(\sum_{i=1}^{n} \int_{\Omega} \rho^{2\alpha}(x) |u'_{x_{i}}(x)|^{2} dx + \int_{\Omega} |u(x)|^{2} dx\right)^{1/2}.$$

We denote by \mathcal{H} the closure of $C_0^{\infty}(\Omega)$ in \mathcal{H} with respect to the above norm. i.e., \mathcal{H} is the closure of $C_0^{\infty}(\Omega)$ in $W_{2,\alpha}^2(\Omega)$. The notion $C_0^{\infty}(\Omega)$ stands for the space of infinitely differentiable functions with compact support in Ω . In this paper, we investigate the

²⁰¹⁰ Mathematics Subject Classification. 35JXX, 35PXX.

 $Key\ words\ and\ phrases.$ Resolvent, Eigenvalues, Non-selfadjo
in elliptic differential operators, spectrum .

Communicated by: Sohrab Azimpour

[†]Corresponding author.