Poincare Journal of Analysis & Applications Vol. 8, No. 1(II) (2021), 111-117 ©Poincare Publishers

ON QUASI S-TOPOLOGICAL IP-LOOPS

MUHAMMAD KASHIF MAQBOOL, MUHAMMAD AWAIS YOUSAF, AND CENAP OZEL †

Date of Receiving	:	18.	01.	2021
Date of Revision	:	27.	10.	2021
Date of Acceptance	:	01.	11.	2021

Abstract. In this paper, we have investigated that in what manner separately semi-continuous multiplication and semi continuous inverse mappings of topological spaces are defined over loops, in particular, over IP-loops. We have also constructed an example of quasi s-topological IP-loops by using zero dimensional additive metrizable perfect topological IP-loop L^* with relative topology $\tau_{L'}$.

1. Introduction

With the introduction of semi open set by N. Levine, many of the mathematicians examined and explored several concepts by using semi continuity and semi open sets [8, 17, 19]. A number of new results are obtained when open set is replaced by semi open set and continuity is replaced by semi continuity [6, 10, 12, 22].

N. Levine defined semi open set as: A subset M of X is semi open, if there is an open set O in X such that

$$O\subseteq M\subseteq Cl(O)$$

or

$$M \subseteq Cl(Int(M)).$$

The collection of all semi open sets in X is denoted by SO(X) and SO(X,t) denotes the collection of all semi open sets containing t.

A point $t \in X$ is a semi interior point of M, if there exists a semi open set M' such that

$$t \in M' \subseteq M.$$

sInt(M) is the set of all semi-interior points of M. For any semi-open set M_t , $t \in sCl(M')$ if and only if $M_t \cap M' \neq \phi$ [1].

A mapping $f: X \to Y$ is said to be

2010 Mathematics Subject Classification. 22A05, 22A30, 54C08, 54H99.

Key words and phrases. Semi open set, Semi open mapping, Semi continuity, Quasi s-topological IP-loop.

Communicated by.

 $^\dagger Corresponding author.$ Adem Lilicman