

Poincare Journal of Analysis & Applications Vol. 8, No. 1(I) (2021), Special issue, 201-207 ©Poincare Publishers

STRICTLY S-MENGER BOUNDED GROUPS

MUHAMMAD ASAD IQBAL † AND MOIZ UD DIN KHAN

Date of Receiving : 09. 08. 2020 Date of Acceptance : 09. 09. 2020

Abstract. In this paper, we define and investigate s-Menger-bounded groups. Also, we define strictly s-Menger-bounded groups using infinite topological game between two players. It is shown that strictly s-Menger-bounded group structure is preserved under irresolute epimorphism and possess open hereditary property.

1. Introduction

Throughout in this paper, a space mean an infinite topological space, e mean identity of the group G and along with the generally accepted symbols, we use our own notations and those from [13] and [19]. Let \mathcal{U} and \mathcal{V} are families of set X. $S_{fin}(\mathcal{U}, \mathcal{V})$ (resp. $S_1(\mathcal{U}, \mathcal{V})$) represents the selection hypothesis: For each $(\mathcal{U}_i)_{i \in N} \in \mathcal{U}$ there is $(\mathcal{V}_i)_{i \in N}$ (resp. $(b_i)_{i \in N}$) such that for each $i \in N$, a finite set $\mathcal{V}_i \subset \mathcal{U}_i$ (resp. $b_i \in \mathcal{U}_i$), and $\bigcup_{i \in N} \mathcal{V}_i$ (resp. $\{b_i\}_{i \in N}$) $\in \mathcal{V}$ (see [23]).

The Menger (M) (resp. Rothberger (R)) covering property of a space X is given as $S_{fin}(\mathcal{O}, \mathcal{O})$ (resp. $S_1(\mathcal{O}, \mathcal{O})$) and s-Menger (sM) (resp. s-Rothberger (sR)) covering property [13, 19], is given as $S_{fin}(s\mathcal{O}, s\mathcal{O})$ (resp. $S_1(s\mathcal{O}, s\mathcal{O})$). The family of all open and semi open covers of a space X is represented as \mathcal{O} and $s\mathcal{O}$ respectively.

In 1924 M property was demonstrated by Karl Menger with name of M basis property [16] and next year W. Hurewicz [9] verified an if and only if relation between M basis property and M covering property for a metric space. For more data about selection principles (SP) theory, we allude the peruser to see [14, 21, 22, 25].

For the SP $S_{fin}(\mathcal{U}, \mathcal{V})$ the infinite game, represented as $G_{fin}(\mathcal{U}, \mathcal{V})$ [24]. In this game Tom and Jerry, play an inning per positive integer. In the *i*th turn Tom chooses $U_i \in \mathcal{U}$, and then Jerry counters with a finite set $V_i \subseteq U_i$. Thusly they set up a play $U_1, V_1, ..., U_i, V_i, ...$ such a play is won by Jerry if $\bigcup \{V_i : i \in N\} \in \mathcal{V}$; else, Tom wins. When \mathcal{U} and \mathcal{V} are open covers of the space or topological group (TG) then the game is known as M-game.

For the SP $S_1(\mathcal{U}, \mathcal{V})$ the infinite game, represented as $G_1(\mathcal{U}, \mathcal{V})$ [5]. In this game Tom

²⁰¹⁰ Mathematics Subject Classification. 91A44, 54C08, 54D20, 54H10.

Key words and phrases. irresolute mapping, irresolute topological group, s-Menger-bounded group, strictly s-Menger-bounded group.

Communicated by. M. L. Thivagar and S. Jafari