

Poincare Journal of Analysis & Applications Vol. 8, No. 1(I) (2021), Special issue, 209-223 ©Poincare Publishers

ON Ψ_{δ} -SETS AND Ψ_{δ} -FUNCTIONS DEFINED BY IDEALS

F.Y. ISSAKA AND M. ÖZKOQ[†]

Date of Receiving	:	21.	12.	2020
Date of Revision	:	21.	02.	2021
Date of Acceptance	:	30.	02.	2021

Abstract. In this paper, we introduce two operator associate with Ψ and δ -int operators in ideal topological spaces and investigate their properties. We will use the composite of these operators to offer a finer topology on X than τ_{δ} by utilizing the new notions of $\Psi_{\delta}O(X)$. Also, we will use a special ideal to define ω_{δ} -open and ω_{δ} -closed sets. Finally, we will give some of the fundamental properties of such sets and some existing functions in the literature.

1. Introduction

The study of local function on ideal topological space was introduced by Kuratowski [12]. Many mathematicians such as Jankovic and Hamlet [6, 7]; Samuel [20]; Hayashi [8]; Modak and Islam [11, 17, 15] have enriched this study. Natkaneic [18] have introduced the complement of local function and it is called Ψ -operator. In an ideal topological space (X, τ, \mathcal{I}) , the local function $(\cdot)^*$ is defined as $A^*(\mathcal{I}, \tau)$ (or simply A^*) := $\{x \in X : (\forall U \in \mathcal{U}(x)) (U \cap A \notin \mathcal{I})\}$ where $\mathcal{U}(x)$ is the collection of all open subsets containing $x \in X$. It is complement function, that is Ψ -operator is defined as $\Psi(A) := X \setminus (X \setminus A)^*$. Hdeib introduced the notion of ω -closeness [9] by which he introduced and investigated the notion of ω -continuity. Fomin introduced the notion of θ -continuity [4] and the notion of δ -continuity has been defined by Noiri [19]. The notions of θ -open and δ -open (resp. δ -open) sets in a topological space forms a topology on X denoted by τ_{θ} (resp. τ_{δ})

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54C08.

Key words and phrases. ideal topological space; Ψ -operator; Ψ_{δ} -sets; Ψ_{δ} -function; ω_{δ} -open; ω_{δ} -continuity.

This study has been supported by the Scientific Research Project Fund of Muğla Sıtkı Koçman University under the project number 20/113/03/1. We would like to thank the anonymous reviewers for their careful reading of our manuscript and their insightful comments and suggestions.

Communicated by. M- Lellis Thivagar and N. Rajesh

[†]Corresponding author.