Poincare Journal of Analysis & Applications Vol. 10, No. 1 (2023), 155-163 ©Poincare Publishers DOI: 10.46753/pjaa.2023.v010i01.011

DECOMPOSITION OF $(\alpha - \mathcal{H}_{\sigma}, \lambda)$ -CONTINUITY

R. RAMESH † AND AHMAD AL-OMARI

Date of Receiving	:	23.	11.	2022
Date of Revision	:	06.	04.	2023
Date of Acceptance	:	12.	06.	2023

Abstract. In this new research paper we introduce and investigate the new kind of open sets α - \mathcal{H}_{σ} -open, σ - \mathcal{H}_{σ} -open, π - \mathcal{H}_{σ} -open, β - \mathcal{H}_{σ} -open sets in hereditary generalized topological spaces. Also, we obtained a decomposition of $(\alpha$ - $\mathcal{H}_{\sigma}, \lambda)$ -continuity and decompositions of (μ, λ) -continuity.

1. Introduction and Preliminaries

In the year 2002, Császár [5] introduced very useful notions of generalized topology and generalized continuity. Consider Z be a nonempty set and μ be a collection from the subsets of Z. Then μ is called a *generalized topology* (briefly GT) if $\emptyset \in \mu$ and an arbitrary union of elements from μ belongs to μ . Let μ be a generalized topology on Z, the elements of μ are called μ -open sets and the complement of μ -open sets are called μ -closed sets. The generalized-closure of a subset A of X, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A and the interior of A, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in A. A subset L of a space (Z, μ) is called as μ - α -open [6] (resp. μ - σ -open [6], μ - π -open [6], μ - β -open [6]) if $L \subset i_{\mu}c_{\mu}i_{\mu}(L)$ (resp. $L \subset c_{\mu}i_{\mu}(L)$, $L \subset i_{\mu}c_{\mu}(L), L \subset c_{\mu}i_{\mu}c_{\mu}(L))$. Let Z be a space. Then $\mu(x) = \{U : x \in U \in \mu\}$. A space Z is called a C_0 -space [14], if $C_0 = Z$, where C_0 is the set of all representative elements of sets of μ and x is called a represent element of $u \in \mu$ if $u \subset v$ for each $v \in \mu(x)$. A nonempty family \mathcal{H} of subsets of Z is called as a *hereditary class* [7], if $L \in \mathcal{H}$ and $B \subset L$, then $B \in \mathcal{H}$. For each $L \subseteq Z$, $L^*(\mathcal{H}, \mu) = \{z \in Z : L \cap V \notin \mathcal{H}\}$ for all $V \in \mu$ such that $z \in V$ [7]. For $L \subset Z$, define $c^*_{\mu}(L) = L \cup L^*(\mathcal{H}, \mu)$ and $\mu^* = \{L \subset Z : Z - L = c^*_{\mu}(Z - L)\}$. If \mathcal{H} is a hereditary class on Z, then (Z, μ, \mathcal{H}) is

²⁰¹⁰ Mathematics Subject Classification. 54A05.

Key words and phrases. hereditary generalized topology, α - \mathcal{H}_{σ} -open, σ - \mathcal{H}_{σ} -open and π - \mathcal{H}_{σ} -open sets.

Communicated by. Murad Özkoç

[†]Corresponding author