

Poincare Journal of Analysis & Applications Vol. 10, No. 1 (2023), 23-27 ©Poincare Publishers DOI: 10.46753/pjaa.2023.v010i01.002

RATIONAL LIMIT CYCLES FOR A CLASS OF GENERALIZED ABEL'S POLYNOMIAL DIFFERENTIAL EQUATIONS

A. KINA[†] AND A. BENDJEDDOU

Date of Receiving	:	11.	08.	2021
Date of Revision	:	05.	11.	2022
Date of Acceptance	:	13.	11.	2022

Abstract. In this manuscript, we deal with a class of generalized Abel's ordinary polynomial differential equations of the form

$$\frac{dy}{dt} = F(t)y^2 + G(t)y^n$$

where F(t), G(t) are real polynomials with $G(t) \neq 0$ and $n \ge 3$. We prove that these Able differential equations have non-trivial rational limit cycles. We also discuss the relation between the existence of the non-trivial rational limit cycles and the degrees of real polynomials F(t), G(t).

1. Introduction and presentation of the main results

In this research, we want to study the existence of non-trivial rational limit cycles of a class of polynomial differential equations

$$\frac{dy}{dt} = F(t)y^2 + G(t)y^n,\tag{1.1}$$

where t, y are real variables and G(t) and F(t) are two real polynomials of degree r, s respectively with $G(t) \neq 0$.

The study of limit cycles of differential equations is one of the main problems in the qualitative theory of differential equations (see for instance [2, 10, 11, 12, 13]) in addition to that, the differential equations (1.1) are interesting because they happen in a lot of models of real phenomena (see for instance [3, 6]).

A periodic solution of equation (1.1) is a solution y(t) defined in [0,1] such as y(0) - y(1) = 0, note that without loss of over-simplification we are supposing that

Communicated by. Tayeb Salhi

[†]Corresponding author

²⁰¹⁰ Mathematics Subject Classification. 34C05, 34C07, 34C08.

Key words and phrases. Abel polynomial differential equations, periodic solutions, rational limit cycle.