

Poincare Journal of Analysis & Applications Vol. 10, No. 2 (2023), 319-327 © Poincare Publishers DOI: 10.46753/pjaa.2023.v010i02.009

VOLTERRA PROPERTIES IN GENERALIZED TOPOLOGICAL SPACES

P. JEYANTHI[†], G. GEETHA, AND S. JAFARI

Date of Receiving	:	07.	01.	2023
Date of Revision	:	04.	08.	2023
Date of Acceptance	:	22.	09.	2023

Abstract. In this paper, we study Volterra properties in generalized topological spaces and also those Volterra properties in subspaces by using compactness and separation properties.

1. Introduction

In 1881, Vito Volterra [19] introduced an interesting and important class of spaces, now called after his name, Volterra spaces about which he obtained several important and interesting results. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that both the sets of points where f is continuous and its complement are dense. Then there is no function $q: \mathbb{R} \to \mathbb{R}$ such that the set of points where g is continuous is precisely the set of points where f is discontinuous. In 1993, the concept of Volterra spaces was restated by Gauld et al. [[6], Definition 15], and proved that a space X is Volterra if for each $f, g: \mathbb{X} \to \mathbb{R}$ for which C(f) and C(q) are dense in X, the set $C(f) \cap C(q)$ is also dense in X where C(f) denotes the set of points of X at which f is continuous. In [7], they also proved that X is strongly Volterra (respectively, Volterra) if $C(f) \cap C(g)$ is dense in X (respectively, non-empty) whenever $f, g: X \to \mathbb{R}$ are two functions for which C(f) and C(g) are dense in X. In [8], the concepts of Volterra and weakly Volterra were stabilized and the authors proved that a topological space X is Volterra (respectively, weakly Volterra) if for every pair Gand H of dense G_{δ} subsets of X, the set $G \cap H$ is dense (respectively, non-empty). A subset of X is called G_{δ} if it is the intersection of countably many open subsets of X. In 2005, Cao et al.[1] revisited the papers of Gauld et al.[7, 8] and also studied Volterraness in homogeneous spaces. Spadaro [17] established the relation between P-spaces and the Volterra property. Milan Matejdes (see [14] and [15]) studied the basic properties of weak ε -Volterra and ε -Volterra spaces which correspond to the known results of the Volterra

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54E52, 54G10.

Key words and phrases. Generalized topological space; Volterra space; gT_2 -space; gT_3 -space; gT_4 -space.

Communicated by. Árpád Száz

[†]Corresponding author