

Poincare Journal of Analysis & Applications Vol. 10, No. 3 (2023), Special issue, 165-170 ©Poincare Publishers DOI: 10.46753/pjaa.2023.v010i03.010

ON \mathcal{H} -FRAME INDUCED MONOMORPHISMS FOR A REDUCING SUBSPACE \mathcal{H}

SWATI SRIVASTAVA † AND RESHMA SINGH

Date of Receiving	:	03.	04.	2023
Date of Revision	:	01.	02.	2024
Date of Acceptance	:	23.	02.	2024

Abstract. In this paper, we characterize the \mathcal{H} -frame induced monomorphism for a normalized tight \mathcal{H} -frame wavelet set in a reducing subspace \mathcal{H} . This leads to a construction of normalized tight \mathcal{H} -frame wavelet sets. Also, we study symmetric normalized tight \mathcal{H} -frame wavelet sets as a special case. Further, fixed point sets of these maps are studied. Different examples are considered for illustration.

1. Introduction

A function $\psi \in L^2(\mathbb{R})$ is said to be an orthonormal wavelet if the system $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$, where $\psi_{j,k} \equiv 2^{j/2}\psi(2^j \cdot -k)$, $j,k \in \mathbb{Z}$, forms an orthonormal basis for $L^2(\mathbb{R})$. If $\{\psi_{j,k}\}_{j,k\in\mathbb{Z}}$ forms (tight, normalized tight) frame for $L^2(\mathbb{R})$, then the function ψ is called a (tight, normalized tight) frame wavelet for $L^2(\mathbb{R})$. If the modulus of the Fourier transform of a wavelet is a characteristic function on a measurable set W in \mathbb{R} , then the set W is called a wavelet set. The Lebesgue measure of a wavelet set is 2π . If the characteristic function on a measurable set is modulus of Fourier transform of a normalized tight frame wavelet, then we call the measurable set as a frame wavelet set. The Lebesgue measure of a frame wavelet set is less than or equal to 2π . Thus, a wavelet is particularly a normalized tight frame wavelet and a frame wavelet set is a wavelet set if its Lebesgue measure is 2π . A study of frame wavelet sets can be found in Ref. [1, 2, 3, 4, 5, 6] and [12].

Let \mathcal{H} be a closed subspace of $L^2(\mathbb{R})$. We say that \mathcal{H} is a *reducing subspace* if $f(2^m \cdot -l) \in \mathcal{H}$ for all $f \in \mathcal{H}$ and $m, l \in \mathbb{Z}$. A characterization of reducing subspaces is given as follows:

Theorem 1.1. [8] Let \mathcal{H} be a closed subspace of $L^2(\mathbb{R})$. Then \mathcal{H} is a reducing subspace if and only if $\hat{\mathcal{H}} = L^2(\mathbb{R}) \cdot \chi_{\mathbb{E}}$ for some measurable set \mathbb{E} of \mathbb{R} with the property $\mathbb{E} = 2\mathbb{E}$.

²⁰¹⁰ Mathematics Subject Classification. 42C40, 54H25.

 $Key \ words \ and \ phrases.$ wavelet set, frame wavelet set, wavelet induced isomorphism, frame induced monomorphism, fixed point set.

Communicated by: Firdous Ahmad Shah

[†]Corresponding author