

Poincare Journal of Analysis & Applications Vol. 11, No. 1 (2024), 95-105 ©Poincare Publishers DOI: 10.46753/pjaa.2024.v011i01.007 Online Published on 01. 07. 2024

A NOTE ON RIESZ BASES IN THE FRAMEWORK OF QUATERNIONIC HILBERT SPACE

S. K. SHARMA, VIRENDER[†] AND S. K. KAUSHIK

Date of Receiving	:	18.	08.	2023
Date of Revision	:	19.	12.	2023
Date of Acceptance	:	29.	04.	2024

Abstract. In this article, we introduce and study Riesz bases in a separable quaternionic Hilbert space. It is proved that a Riesz basis is a frame in the quaternionic Hilbert space. Riesz sequences are defined and equivalence of a Riesz basis and a complete Riesz sequence in a separable quaternionic Hilbert space is proved.

1. Introduction

Frames for Hilbert spaces, which plays an important role in many applications, were introduced way back in 1952 by Duffin and Schaeffer [9] as a tool to study of non-harmonic Fourier series. Duffin and Schaeffer introduced frames for particular Hilbert spaces of the form $L^2[a, b]$. They defined a frame as

"A sequence $\{x_n\}_{n \in \mathbb{N}}$ in a Hilbert space \mathcal{H} is said to be a *frame* for \mathcal{H} if there exist constants A and B with $0 < A \leq B < \infty$ such that

$$A\|x\|^{2} \leq \sum_{n=1}^{\infty} |\langle x, x_{n} \rangle|^{2} \leq B\|x\|^{2}, \text{ for all } x \in \mathcal{H}.$$
 (1.1)

Moreover, the positive constants A and B, respectively, are called *lower frame bound* and *upper frame bound*, respectively, for the frame $\{x_n\}_{n\in\mathbb{N}}$. Collectively, these are referred as *frame bounds* for the frame $\{x_n\}_{n\in\mathbb{N}}$. The inequality (1.1) is called the *frame inequality* for the frame $\{x_n\}_{n\in\mathbb{N}}$. A sequence $\{x_n\}_{n\in\mathbb{N}} \subset \mathcal{H}$ is called a *Bessel* sequence if it satisfies upper frame inequality in (1.1) i.e. it has upper bound which satisfies the inequality. A frame $\{x_n\}_{n\in\mathbb{N}}$ in \mathcal{H} is said to be

• *tight* if it is possible to choose A, B with A = B satisfying inequality (1.1).

²⁰¹⁰ Mathematics Subject Classification. 42C15, 42A38.

Key words and phrases. Frames, Quaternionic Hilbert space.

Communicated by: A. Askari Hemmat

[†]Corresponding author