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Abstract . In this article, we introduce and study Riesz bases in a separable

quaternionic Hilbert space. It is proved that a Riesz basis is a frame in the
quaternionic Hilbert space. Riesz sequences are defined and equivalence of a Riesz

basis and a complete Riesz sequence in a separable quaternionic Hilbert space is

proved.

1. Introduction

Frames for Hilbert spaces, which plays an important role in many applications, were
introduced way back in 1952 by Duffin and Schaeffer [9] as a tool to study of non-
harmonic Fourier series. Duffin and Schaeffer introduced frames for particular Hilbert
spaces of the form L2[a, b]. They defined a frame as

“A sequence {xn}n∈N in a Hilbert space H is said to be a frame for H if there exist
constants A and B with 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∞∑

n=1

|〈x, xn〉|2 ≤ B‖x‖2, for all x ∈ H.” (1.1)

Moreover, the positive constants A and B, respectively, are called lower frame bound
andupper frame bound, respectively, for the frame {xn}n∈N. Collectively, these are
referred as frame bounds for the frame {xn}n∈N. The inequality (1.1) is called the
frame inequality for the frame {xn}n∈N. A sequence {xn}n∈N ⊂ H is called a Bessel
sequence if it satisfies upper frame inequality in (1.1) i.e. it has upper bound which
satisfies the inequality. A frame {xn}n∈N in H is said to be

• tight if it is possible to choose A, B with A = B satisfying inequality (1.1).
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