

Poincare Journal of Analysis & Applications Vol. 11, No. 2 (2024), 147-155 ©Poincare Publishers DOI: 10.46753/pjaa.2024.v011i02.004 Online Published on 27. 10. 2024

THE SHARP BOUND OF THE GENERALIZED ZALCMAN FOR THE INITIAL COEFFICIENT AND CERTAIN SECOND HANKEL DETERMINANTS OF kth-ROOT TRANSFORMATION FOR A SUBCLASS OF HOLOMORPHIC FUNCTIONS

G. K. SURYA VISWANADH, BISWAJIT RATH †, K. SANJAY KUMAR, AND D. VAMSHEE KRISHNA

Date of Receiving	:	02.	01.	2023
Date of Revision	:	15.	03.	2024
Date of Acceptance	:	01.	08.	2024

Abstract. The objective of this paper is to estimate the sharp bound of the second Hankel determinants $H_{2,1,k}(f)$, $H_{2,2,k}(f)$ and generalized Zalcman for the initial coefficient for k^{th} -root transformation to the subclass of Holomorphic functions.

1. Introduction

Let \mathcal{A} be the family of mappings f of the type

$$f(z) = z + \sum_{t=2}^{\infty} a_t z^t \tag{1.1}$$

satisfying the normalized conditions f(0) = 0 and f'(0) = 1 in the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ and S is the subfamily of A, possessing univalent (schlicht) mappings.

Let k be a positive integer. A domain $\mathbb{U} \in \mathbb{C}$ is said to be k-fold symmetric if a rotation of \mathbb{U} about the origin through an angle $\frac{2\pi}{k}$ carries \mathbb{U} to itself. A function f is said to be k-fold symmetric in \mathbb{D} if $f\left(e^{\frac{2\pi i}{k}}z\right) = e^{\frac{2\pi i}{k}}f(z)$ for every $z \in \mathbb{D}$. If f is regular and k-fold symmetric in \mathbb{D} , then

$$f(z) = b_1 z + b_{k+1} z^{k+1} + b_{2k+1} z^{2k+1} + \cdots$$
(1.2)

²⁰¹⁰ Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Holomorphic function, Univalent function, Hankel determinant, k^{th} root transformation, Carathéodory function.

Communicated by: Sudhananda Maharana

[†]Corresponding author