

Poincare Journal of Analysis & Applications Vol. 11, No. 2 (2024), 247-251 ©Poincare Publishers DOI: 10.46753/pjaa.2024.v011i02.012 Online Published on 29. 12. 2024

ON MAZUR PROPERTY IN BANACH SPACES WITH PRI

K. K. ARORA

Date of Receiving	:	17. (09.	2024
Date of Revision	:	23.	12.	2024
Date of Acceptance	:	23.	12.	2024

Abstract. Mazur property is proved in some Banach spaces having projectional resolutions of identity (PRI). As a consequence these Banach spaces (having PRI) have Pettis integration property.

1. Introduction and Preliminaries

The concept of projectional resolutions of the identity (in short, PRI) has played an important tool in the study of geometric properties of Banach spaces like Gelfand-Philips property, having weak* sequentially compact and weak* angelic dual unit balls, existance of Markusévic bases and Odell-Rosenthal type results. In this paper, we shall prove another important property namely Mazur property in some Banach spaces having PRI. As a consequence, these spaces have Pettis Integration property.

An infinite dimensional Banach space is denoted by E and let E^* and E^{**} be its first and second dual respectively. The cardinality of the smallest dense set in E is denoted by dens E. The first ordinal with cardinality \aleph_0 is denoted by ω ; the other symbols used for ordinals are α , β , λ and μ . Let the first ordinal with cardinality dens E is denoted by μ . A long sequence $\{p_{\alpha}\}_{\omega \leq \alpha \leq \mu}$ of projections on a Banach space E is said to be a projectional resolutions of the identity (PRI) of E, if the following conditions are satisfied:

(i)	$\ p_{\alpha}\ = 1$	$(\omega \le \alpha \le \mu)$
(ii)	$p_{lpha} \cdot p_{eta} = p_{eta} \cdot p_{lpha} = p_{eta}$	$(\omega \le \beta \le \alpha \le \mu)$
(iii)	dens $p_{\alpha}(E) \leq \text{card } \alpha$	$(\omega \leq \alpha \leq \mu)$
(iv)	$p_{\alpha}(E) = \overline{\cup \{p_{\beta+1}(E) : \omega \le \beta < \alpha\}}$	$(\omega \le \alpha \le \mu)$
(v)	$p_{\mu} = I.$	

²⁰¹⁰ Mathematics Subject Classification. 46B10, 46B15. Key words and phrases. Mazur property, PRI. Communicated by: Ravindra K. Bisht