

Poincare Journal of Analysis & Applications Vol. 11, No. 2 (2024), 189-195 ©Poincare Publishers DOI: 10.46753/pjaa.2024.v011i02.008 Online Published on 29. 11. 2024

NORMALITY CRITERIONS ON SHARING A HOLOMORPHIC FUNCTION

PAI YANG[†], HULI LIN, AND JINHUA YANG

Date of Receiving	:	11.	06.	2024
Date of Revision	:	12.	11.	2024
Date of Acceptance	:	13.	11.	2024

Abstract. Let \mathcal{F} be a family of holomorphic functions in a domain D, whose zeros have multiplicity at least 4 in D. Let $\psi(\not\equiv 0)$ be a holomorphic function in D, whose zeros have multiplicity at most 2. If for each pair of functions $\{f,g\} \subset \mathcal{F}, f'$ and g' share ψ in D, then \mathcal{F} is normal in D.

1. Introduction and main result

Let \mathbb{C} be the complex plane and D be a domain on \mathbb{C} . For $z_0 \in \mathbb{C}$ and r > 0, we write $\Delta(z_0, r) := \{z | |z - z_0| < r\}$, $\Delta := \Delta(0, 1)$ and $\Delta'(z_0, r) := \{z | 0 < |z - z_0| < r\}$. We write $f_n \stackrel{\chi}{\Rightarrow} f$ in D to indicate that the sequence $\{f_n\}$ converges to f in the spherical metric uniformly on compact subsets of D and $f_n \Rightarrow f$ in D if the convergence is in the Euclidean metric. We also write $\mathbb{P}_f := f^{-1}\{\infty\}$ for the set of poles of a meromorphic function f.

Let f and g be two meromorphic functions and φ be a holomorphic function in D. We say that f and g share φ in D if $\{z \mid f(z) = \varphi(z), z \in D\} = \{z \mid g(z) = \varphi(z), z \in D\}$. Our point of departure is the following criterions for normality due to Xu [1].

Theorem 1. [1, Lemma 7] Let \mathcal{F} be a family of holomorphic functions in D, and let $\psi(\neq 0)$ be a holomorphic function in D. Suppose that, for each $f \in \mathcal{F}$, f has no zeros in D. If for each pair of functions $\{f,g\} \subset \mathcal{F}$, f' and g' share ψ in D, then \mathcal{F} is normal in D.

Theorem 2. [1, Theorem 1.1] Let \mathcal{F} be a family of meromorphic functions in D, and let $\psi(\not\equiv 0)$ be a holomorphic function in D whose zeros are simple. Suppose that, for each $f \in \mathcal{F}$, f has no zeros and has only multiple poles in D. If for each pair of functions $\{f,g\} \subset \mathcal{F}$, f' and g' share ψ in D, then \mathcal{F} is normal in D.

²⁰¹⁰ Mathematics Subject Classification. 30D35, 30D45.

Key words and phrases. Meromorphic function, Shared values, Normality criteria.

Communicated by: Gopal Datt

[†]Corresponding author