

Poincare Journal of Analysis & Applications Vol. 12, No. 2 (2025), 1-5 ©Poincare Publishers DOI: 10.46753/pjaa.2025.v012i02.001 Online Published on 15. 02. 2025

UNIQUENESS AND NON-UNIQUENESS OF THE RADON TRANSFORM

ALEXANDER G. RAMM

Date of Receiving	:	04.	01.	2025
Date of Revision	:	28.	01.	2025
Date of Acceptance	:	30.	01.	2025

Abstract. Let Rh = 0, R is the Radon transform of h, $Rh = \int_{\mathbb{R}^2} \delta(p - \alpha \cdot x)h(x)dx = \int_{L_{\alpha p}} h(s)ds$, where $L_{\alpha p}$ is the straight line $\alpha \cdot x = p$, $\alpha = (\cos \theta, \sin \theta)$, $0 \le \theta < 2\pi$. Uniqueness of R means that equation Rh = 0 implies h = 0. Non-uniqueness means that there exists h, not equal to zero identically and satisfying equation Rh = 0 for all unit vectors α and all $p \ge 0$. We prove uniqueness of the Radon transform for $h \in S'$, where S' is the Schwartz's space of tempered distributions. It is known that there are entire functions h, not equal to zero identically, h = h(z), $z = x_1 + ix_2$, which satisfy equation Rh = 0.

1. Introduction

The Radon transform of h is defined as

$$Rh = \int_{\mathbb{R}^2} \delta(p - \alpha \cdot x) h(x) dx = \int_{L_{\alpha p}} h(s) ds, \qquad (1.1)$$

where $L_{\alpha p}$ is the straight line $\alpha \cdot x = p$, ds is the element of the length along this straight line, δ stands for the delta-function, $\alpha = (\cos \theta, \sin \theta)$, $0 \le \theta < 2\pi$, and h stands for a locally continuous function, $0 \le p < \infty$. So, the Radon transform depends on p and α .

Uniqueness of R means that equation Rh = 0 implies h = 0. Non-uniqueness means that there exists h not identically equal to zero and satisfying equation Rh = 0 for all unit vectors α and all $p \ge 0$.

In this paper we solve one of the open problems from [7]:

We prove uniqueness of the Radon transform for $h \in S'$, where S' is the Schwartz's space of tempered distributions.

It is known that there are entire functions $h \neq 0$, h = h(z), $z = x_1 + ix_2$, which satisfy equation Rh = 0, [4], p. 55, see also [1]. It is known (see [4]) that if $h \in S$ and Rh = 0, then h = 0.

²⁰¹⁰ Mathematics Subject Classification. 44A12, 92C55.

Key words and phrases. The Radon transform, tempered distributions, analytic functions. Communicated by: Wayne M. Lawton